Implementation of Iterative Resonance Integral Table (i-RIT), Subgroup Methods in STREAM for High Temperature Reactor Analysis

2018. 5. 18 (Friday)
Chidong Kong
Chang Keun Jo
Deokjung Lee
Table of Contents

- Introduction
- Methodology
- Problem Description
- Verification of STREAM Solver with DeCART Library
- STREAM Library Generation
- Numerical Results
- Conclusions
- Future Plan
As one of the generation four nuclear reaction designs, a very high temperature gas-cooled reactor (VHTR) has been in the spotlight with its high safety feature.

For VHTR compact problem, iterative Resonance Integral Table (i-RIT) method has been implemented in STREAM.

For VHTR compact problem, subgroup method has been implemented in STREAM.

The two methods have been tested in STREAM with a newly generated STREAM 190G and 220G libraries.
Methodology

- **i-RIT(b) method**

\[
\Omega \cdot \nabla \psi + \left(\Sigma_a + \lambda \Sigma_p \right) \psi = \frac{1}{4\pi} \lambda \Sigma_p
\]

1. Initial guess
2. Solve MOC
3. Get RI from library
4. Obtain effective \(\Sigma_a \)
5. Update \(\Sigma_a \)
6. Iteration until \(\Sigma_a \) converges

\[
\sigma_{b}^{MOC} = \frac{1}{N_r} \cdot \frac{\Sigma_a \phi}{(1 - \phi)}
\]

\[
\Sigma_a = \sum_{r \in R} N_r \sigma_a^r
\]

\[
\sigma_a^r = \frac{RI(\sigma_{b}^{MOC})/\Delta u}{1 - (RI(\sigma_{b}^{MOC})/\Delta u)/\sigma_{b}^{MOC}}
\]
Methodology

- i-RIT(a) method
 - Method of equivalence XS tabulation

\[
\begin{align*}
\Sigma_{b,c,g}^{MOC} (\sigma_{a,c,r,g,m}) &= \sum_{i} \lambda \Sigma_{p}^{i} + \Sigma_{eq,c,g} (\sigma_{a,c,r,g,m}) \\
\Sigma_{eq,c,g} (\sigma_{a,c,r,g,m}) &= \Sigma_{b,c,g}^{MOC} (\sigma_{a,c,r,g,m}) - \sum_{i} \lambda \Sigma_{p}^{i}
\end{align*}
\]

1. Initial guess
2. Update \(\sigma_{a,k,g}^{(l)} \)
3. Update \(\sigma_{k,g}^{*(l)} \)
4. Update \(\Sigma_{eq,k,g}^{(l+1)} \)
5. Update \(\sigma_{b,k,g}^{(l+1)} \)
6. Iteration until \(\sigma_{b,k,g} \) converges

\[
\mathcal{G}_{eq,c,g} (\sigma_{k,g}^{*(l)}) = G_{eq,c,g} \left(\sigma_{k,g}^{*(l)} \right)
\]

\[
\sigma_{a,k,g}^{(l)} = \frac{R_{a} (\sigma_{b,k,g}^{(l)})}{1 - \frac{R_{a} (\sigma_{b,k,g}^{(l)})}{\sigma_{b,k,g}^{(l)}}}
\]

\[
\sigma_{k,g}^{*(l)} = \frac{R_{a,c,r,g} (\sigma_{a,k,g}^{(l)})}{R_{a,c,r,g,k}}
\]
Methodology

- **Subgroup method**

\[\phi_k = \frac{\sum_i \lambda_i N_i \sigma_p^i + \Sigma_e}{N_r \sigma_{ak} + \sum_i \lambda_i N_i \sigma_p^i + \Sigma_e} = \frac{\sigma_b}{\sigma_{ak} + \sigma_b} \]

where
\[\sigma_b = \frac{1}{N_r} \left(\sum_i \lambda_i N_i \sigma_p^i + \Sigma_e \right) \]

\[\sigma_{bk} = \frac{\sigma_{ak} \phi_k}{(1 - \phi_k)} \]

\[\sigma_{a,eff} = \frac{\sum_{k=1}^{n} \omega_k \sigma_{ak} \frac{\sigma_{bk}}{\sigma_{ak} + \sigma_{bk}}}{\sum_{k=1}^{n} \omega_k \frac{\sigma_{bk}}{\sigma_{ak} + \sigma_{bk}}} \]

- **Subgroup Parameter Generation in STREAM**
 - Generated in homogeneous 0-D problem
 - Using NJOY code
Problem Description

- **VHTR homogenized compact problem**
 - **Fuel:** UO\(_2\) + Graphite
 - **Moderator:** Graphite
 - **Packing fraction:** 1 ~ 60\% (Total 40 cases)

<table>
<thead>
<tr>
<th>Region</th>
<th>Material</th>
<th>Geometry</th>
<th>Radius or Pitch [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>UO(_2) + graphite</td>
<td>Cylinder</td>
<td>0.6225 (Radius)</td>
</tr>
<tr>
<td>Gap</td>
<td>Helium</td>
<td>Cylinder</td>
<td>0.6350 (Radius)</td>
</tr>
<tr>
<td>Moderator</td>
<td>Graphite</td>
<td>Rectangle</td>
<td>1.749165 (Pitch)</td>
</tr>
</tbody>
</table>
Verification of STREAM Solver Module

Using the same DeCART 190G library

<table>
<thead>
<tr>
<th>Packing Fraction [%]</th>
<th>*MCS reference</th>
<th>STREAM (i-RIT(b))</th>
<th>STREAM (i-RIT(a))</th>
<th>STREAM (Subgroup)</th>
<th>DeCART (i-RIT(a))</th>
<th>DeCART (Subgroup)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.50988</td>
<td>1.50020</td>
<td>1.50008</td>
<td>1.50035</td>
<td>1.50023</td>
<td>1.50039</td>
</tr>
<tr>
<td>3</td>
<td>1.63471</td>
<td>1.63060</td>
<td>1.62991</td>
<td>1.63022</td>
<td>1.63067</td>
<td>1.63033</td>
</tr>
<tr>
<td>5</td>
<td>1.60550</td>
<td>1.60410</td>
<td>1.60285</td>
<td>1.60171</td>
<td>1.60417</td>
<td>1.60189</td>
</tr>
<tr>
<td>10</td>
<td>1.50458</td>
<td>1.50932</td>
<td>1.50701</td>
<td>1.50128</td>
<td>1.50924</td>
<td>1.50161</td>
</tr>
<tr>
<td>15</td>
<td>1.42293</td>
<td>1.43167</td>
<td>1.42853</td>
<td>1.41920</td>
<td>1.43127</td>
<td>1.41969</td>
</tr>
<tr>
<td>17.5</td>
<td>1.38857</td>
<td>1.39886</td>
<td>1.39535</td>
<td>1.38476</td>
<td>1.39819</td>
<td>1.38527</td>
</tr>
<tr>
<td>19.5</td>
<td>1.36376</td>
<td>1.37497</td>
<td>1.37116</td>
<td>1.35974</td>
<td>1.37406</td>
<td>1.36026</td>
</tr>
<tr>
<td>21.5</td>
<td>1.34140</td>
<td>1.35278</td>
<td>1.34866</td>
<td>1.33666</td>
<td>1.35162</td>
<td>1.33720</td>
</tr>
<tr>
<td>23.5</td>
<td>1.32004</td>
<td>1.33231</td>
<td>1.32789</td>
<td>1.31541</td>
<td>1.33076</td>
<td>1.31585</td>
</tr>
<tr>
<td>25.5</td>
<td>1.30125</td>
<td>1.31313</td>
<td>1.30840</td>
<td>1.29559</td>
<td>1.31130</td>
<td>1.29605</td>
</tr>
<tr>
<td>27.5</td>
<td>1.28312</td>
<td>1.29513</td>
<td>1.29017</td>
<td>1.27717</td>
<td>1.29304</td>
<td>1.27763</td>
</tr>
<tr>
<td>29.5</td>
<td>1.26611</td>
<td>1.27645</td>
<td>1.27129</td>
<td>1.26001</td>
<td>1.27414</td>
<td>1.26048</td>
</tr>
<tr>
<td>31.5</td>
<td>1.25023</td>
<td>1.25871</td>
<td>1.25325</td>
<td>1.24401</td>
<td>1.25609</td>
<td>1.24449</td>
</tr>
<tr>
<td>33.5</td>
<td>1.23578</td>
<td>1.24228</td>
<td>1.23648</td>
<td>1.22907</td>
<td>1.23933</td>
<td>1.22955</td>
</tr>
<tr>
<td>35</td>
<td>1.22554</td>
<td>1.23096</td>
<td>1.22486</td>
<td>1.21852</td>
<td>1.22770</td>
<td>1.21900</td>
</tr>
<tr>
<td>40</td>
<td>1.19420</td>
<td>1.19805</td>
<td>1.19103</td>
<td>1.18696</td>
<td>1.19386</td>
<td>1.18745</td>
</tr>
<tr>
<td>45</td>
<td>1.16738</td>
<td>1.17387</td>
<td>1.16551</td>
<td>1.16031</td>
<td>1.16843</td>
<td>1.16081</td>
</tr>
<tr>
<td>50</td>
<td>1.14460</td>
<td>1.15958</td>
<td>1.14963</td>
<td>1.13785</td>
<td>1.15258</td>
<td>1.13835</td>
</tr>
<tr>
<td>55</td>
<td>1.12494</td>
<td>1.14789</td>
<td>1.13678</td>
<td>1.11911</td>
<td>1.13961</td>
<td>1.11952</td>
</tr>
<tr>
<td>60</td>
<td>1.10764</td>
<td>1.13805</td>
<td>1.12577</td>
<td>1.10333</td>
<td>1.12868</td>
<td>1.10385</td>
</tr>
</tbody>
</table>

*MCS solutions have 15~25 pcm of standard deviations
Verification of STREAM Solver Module

- Using the same DeCART 190G library
 - Well-matched between STREAM and DeCART solutions
C-Based 190G STREAM Library Production

- **NJOY 99.364**
 - RECONR: Getting ENDF resonance parameters, and processing XSs in resolved resonance region for some nuclides
 - BROADR: Processing Doppler broadening
 - UNRESR: Processing XSs in unresolved resonance region
 - HEATR: Processing heating XSs and radiation damage XSs
 - THERMR: Processing $S(\alpha,\beta)$ XSs
 - GROUPR: Collasing multi-group XSs from point-wise XSs

- **Post-processing of NJOY output**
 - Merging outputs of each nuclide and generating a multi-group data file

- **RUP, IR parameter**
 - 190G RUP and IR parameters
C-Based 190G Spectrum Correction

- Spectrum Difference between H-based and C-based Problems

![Neutron Spectrum Graph](image-url)
Subgroup Parameter Generation

- 19 background XSs for 235U and 238U in STREAM
Subgroup Parameter Generation

- **NJOY-generating Effective XSk**
 - Representing resonance integrals (RIs)
 - Total 56 sets of effective cross sections for each resonance energy group
 - 2 nuclides: ^{235}U, ^{238}U
 - 2 reactions: Capture, Fission
 - 7 temperatures: 293.6 K, 600 K, 900 K, 1200 K, 1500 K, 1800 K, 2100 K
 - 2 multi-group libraries: 190G, 220G
Subgroup Parameter Generation

- **NJOY-generating Effective XSs**

U-238 Capture at $T = 293.6$ K

![Graph showing effective XSs for U-238 capture](image)
Determination of Subgroup Level

1. Get continuous energy XS for the resonance energy groups
2. Get the minimum and the maximum XSs in the given energy group
3. Get a difference between the minimum and the maximum
4. Divide the difference into \(N+1 \) in linear scale
5. Generation \(N \) subgroup levels with the same logarithm interval

\[
\sigma_{a,\text{min}}^{sg \subset g} = \sigma_{a,\text{min}}^{sg \subset g} \cdot e^{\frac{n}{N+1} \left(\log\left(\sigma_{a,\text{max}}^{sg \subset g}\right) - \log\left(\sigma_{a,\text{min}}^{sg \subset g}\right)\right)}
\]

in logarithm scale, where \(1 \leq n \leq N \) and \(N = 7 \)
Subgroup Parameter Generation

Subgroup Weight Generation

\[
\sigma_{ak,\text{eff}} \overset{\infty}{=} \frac{\sum_{n=1}^{7} \left(\omega_n \cdot \sigma_{an} \cdot \frac{\sigma_{bk}}{\sigma_{an} + \sigma_{bk}} \right)}{1 - \sum_{n=1}^{7} \left(\omega_n \cdot \frac{\sigma_{an}}{\sigma_{an} + \sigma_{bk}} \right)}
\]

where \(1 \leq k \leq 19 \)

\[
\left[\sigma_{ak,\text{eff}} - \sum_{n=1}^{7} \left(\omega_n \cdot \sigma_{an} \cdot \frac{\sigma_{ak,\text{eff}} + \sigma_{bk}}{\sigma_{an} + \sigma_{bk}} \right) \right]^2 \approx 0 \quad \text{and} \quad \sum_{n=1}^{7} \omega_n \approx 1
\]

\[
\sigma_{a1,\text{eff}} \cdot \frac{\sigma_{a1,\text{eff}} + \sigma_{b1}}{\sigma_{a1} + \sigma_{b1}} \quad \sigma_{a7,\text{eff}} \cdot \frac{\sigma_{a7,\text{eff}} + \sigma_{b1}}{\sigma_{a7} + \sigma_{b1}}
\]

\[
\sigma_{a1,\text{eff}} \cdot \frac{\sigma_{a1,\text{eff}} + \sigma_{b19}}{\sigma_{a1} + \sigma_{b19}} \quad \sigma_{a7,\text{eff}} \cdot \frac{\sigma_{a19,\text{eff}} + \sigma_{b19}}{\sigma_{a7} + \sigma_{b19}}
\]

\[
\begin{bmatrix}
\sigma_{a1,\text{eff}} \\
\sigma_{a2,\text{eff}} \\
\sigma_{a18,\text{eff}} \\
\sigma_{a19,\text{eff}}
\end{bmatrix}
= \begin{bmatrix}
\omega_1 \\
\omega_M \\
\omega_M \\
\omega_M
\end{bmatrix}
\]

\[
\begin{bmatrix}
\sigma_{a1,\text{eff}} \\
\sigma_{a2,\text{eff}} \\
\sigma_{a18,\text{eff}} \\
\sigma_{a19,\text{eff}}
\end{bmatrix}
= \begin{bmatrix}
19 \times 7 \\
7 \times 1 \\
19 \times 1
\end{bmatrix}
\]
Subgroup Parameter Generation

- Subgroup Weight Generation

\[A^T A W = A^T \Sigma \]

\[
\begin{align*}
\sum_{k=1}^{19} \left(\sigma_{a_1} \cdot \frac{\sigma_{ak,eff} + \sigma_{bk}}{\sigma_{a_1} + \sigma_{bk}} \right)^2 & \quad \text{M} \\
\sum_{k=1}^{19} \left(\sigma_{a_1} \cdot \sigma_{a_7} \cdot \frac{\left(\sigma_{ak,eff} + \sigma_{bk} \right)^2}{\left(\sigma_{a_1} + \sigma_{bk} \right)\left(\sigma_{a_7} + \sigma_{bk} \right)} \right) & \quad \text{K} \\
\sum_{k=1}^{19} \left(\sigma_{a_7} \cdot \sigma_{a_1} \cdot \frac{\left(\sigma_{ak,eff} + \sigma_{bk} \right)^2}{\left(\sigma_{a_7} + \sigma_{bk} \right)\left(\sigma_{a_1} + \sigma_{bk} \right)} \right) & \quad \text{L} \\
\sum_{k=1}^{19} \left(\sigma_{a_7} \cdot \sigma_{ak,eff} + \frac{\sigma_{bk}}{\sigma_{a_7} + \sigma_{bk}} \right)^2 & \quad \text{M} \\
\sum_{k=1}^{19} \left(\sigma_{a_7} \cdot \sigma_{ak,eff} + \frac{\sigma_{bk}}{\sigma_{a_7} + \sigma_{bk}} \right) & \quad \text{M} \\
\sum_{k=1}^{19} \left(\sigma_{a_7} \cdot \sigma_{ak,eff} + \frac{\sigma_{bk}}{\sigma_{a_7} + \sigma_{bk}} \right) & \quad \text{M}
\end{align*}
\]

\[\begin{bmatrix}
\omega_1 \\
\omega_2 \\
\omega_7
\end{bmatrix} \]

\[\sigma_{a_1} \sum_{k=1}^{19} \left(\sigma_{ak,eff} \cdot \frac{\sigma_{ak,eff} + \sigma_{bk}}{\sigma_{a_1} + \sigma_{bk}} \right) \]

\[\sigma_{a_7} \sum_{k=1}^{19} \left(\sigma_{ak,eff} \cdot \frac{\sigma_{ak,eff} + \sigma_{bk}}{\sigma_{a_7} + \sigma_{bk}} \right) \]

\[\sigma_{a_7} \sum_{k=1}^{19} \left(\sigma_{ak,eff} \cdot \frac{\sigma_{ak,eff} + \sigma_{bk}}{\sigma_{a_7} + \sigma_{bk}} \right) \]}
Subgroup Parameter Generation

- **Subgroup Weight Generation**
 - MATLAB algorithm

\[\omega_n^{(0)} \text{ initialization} \]

Start loop \((i)\)

\[
A^T A W^{(i)} = A^T \lambda^{(i)} \sum \quad \text{where} \quad \lambda^{(i)} = \sum_{n=1}^{N} \omega_n^{(i)}
\]

Least square fitting using \textit{fminsearch} function

\[
W^{(i+1)} = W^{(i)} \div \text{sum}(W^{(i)})
\]

\[
\lambda^{(i+1)} = \sum_{n=1}^{N} \omega_n^{(i+1)}
\]

\[
\sum_{n=1}^{N} \left(\omega_n^{(i+1)} - \omega_n^{(i)} \right)^2 < \text{eps} \quad \Rightarrow \quad \text{break}
\]

End loop \((i)\)
\[\text{Sum}(wgt \times \text{sign} \times \phi) / \text{sum}(wgt \times \phi) - \text{siga(effective)} \]

- **Error Check : 190G Subgroup Weight**

![Graph of U-238 Capture at T = 293.6 K](image-url)
Numerical Results

- **Using a new STREAM 190G library**

<table>
<thead>
<tr>
<th>Packing Fraction [%]</th>
<th>*MCS reference</th>
<th>STREAM (i-RIT(b))</th>
<th>STREAM (Subgroup)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.50988</td>
<td>1.53254</td>
<td>1.51079</td>
</tr>
<tr>
<td>3</td>
<td>1.63471</td>
<td>1.69131</td>
<td>1.59898</td>
</tr>
<tr>
<td>5</td>
<td>1.60550</td>
<td>1.68741</td>
<td>1.53638</td>
</tr>
<tr>
<td>10</td>
<td>1.50458</td>
<td>1.62109</td>
<td>1.42773</td>
</tr>
<tr>
<td>15</td>
<td>1.42293</td>
<td>1.55719</td>
<td>1.36357</td>
</tr>
<tr>
<td>17.5</td>
<td>1.38857</td>
<td>1.52727</td>
<td>1.34041</td>
</tr>
<tr>
<td>19.5</td>
<td>1.36376</td>
<td>1.50563</td>
<td>1.31065</td>
</tr>
<tr>
<td>21.5</td>
<td>1.34140</td>
<td>1.48435</td>
<td>1.28642</td>
</tr>
<tr>
<td>23.5</td>
<td>1.32004</td>
<td>1.46440</td>
<td>1.26461</td>
</tr>
<tr>
<td>25.5</td>
<td>1.30125</td>
<td>1.44595</td>
<td>1.25134</td>
</tr>
<tr>
<td>27.5</td>
<td>1.28312</td>
<td>1.42884</td>
<td>1.23995</td>
</tr>
<tr>
<td>29.5</td>
<td>1.26611</td>
<td>1.41158</td>
<td>1.22780</td>
</tr>
<tr>
<td>31.5</td>
<td>1.25023</td>
<td>1.39551</td>
<td>1.21179</td>
</tr>
<tr>
<td>33.5</td>
<td>1.23578</td>
<td>1.38050</td>
<td>1.19678</td>
</tr>
<tr>
<td>35</td>
<td>1.22554</td>
<td>1.36989</td>
<td>1.21199</td>
</tr>
<tr>
<td>40</td>
<td>1.19420</td>
<td>1.33693</td>
<td>1.18124</td>
</tr>
<tr>
<td>45</td>
<td>1.16738</td>
<td>1.30731</td>
<td>1.14978</td>
</tr>
<tr>
<td>50</td>
<td>1.14460</td>
<td>1.28189</td>
<td>1.12694</td>
</tr>
<tr>
<td>55</td>
<td>1.12494</td>
<td>1.24078</td>
<td>1.10648</td>
</tr>
<tr>
<td>60</td>
<td>1.10764</td>
<td>1.23784</td>
<td>1.09081</td>
</tr>
</tbody>
</table>

MCS solutions have 15~25 pcm of standard deviations
Numerical Results

- Using a new STREAM 190G library

![Graph showing keff error vs. packing fraction]

- STREAM(i-RIT(b))
- STREAM(subgroup)
Numerical Results

- Using a new STREAM 220G library

190G → 220G

6.476 ~ 6.868 eV : 10 divisions (0.04 eV interval)
19.947 ~ 22.603 eV : 22 divisions (0.12 eV interval)
Numerical Results

Using a new STREAM 220G library

<table>
<thead>
<tr>
<th>Packing Fraction [%]</th>
<th>*MCS reference</th>
<th>STREAM (i-RIT(b))</th>
<th>STREAM (Subgroup)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.50988</td>
<td>1.51294</td>
<td>1.51214</td>
</tr>
<tr>
<td>3</td>
<td>1.63471</td>
<td>1.64152</td>
<td>1.63618</td>
</tr>
<tr>
<td>5</td>
<td>1.60550</td>
<td>1.61468</td>
<td>1.60666</td>
</tr>
<tr>
<td>10</td>
<td>1.50458</td>
<td>1.51724</td>
<td>1.50441</td>
</tr>
<tr>
<td>15</td>
<td>1.42293</td>
<td>1.43724</td>
<td>1.42225</td>
</tr>
<tr>
<td>17.5</td>
<td>1.38857</td>
<td>1.40347</td>
<td>1.38765</td>
</tr>
<tr>
<td>19.5</td>
<td>1.36376</td>
<td>1.37907</td>
<td>1.36272</td>
</tr>
<tr>
<td>21.5</td>
<td>1.34140</td>
<td>1.35647</td>
<td>1.33995</td>
</tr>
<tr>
<td>23.5</td>
<td>1.32004</td>
<td>1.33564</td>
<td>1.31848</td>
</tr>
<tr>
<td>25.5</td>
<td>1.30125</td>
<td>1.31640</td>
<td>1.29931</td>
</tr>
<tr>
<td>27.5</td>
<td>1.28312</td>
<td>1.29853</td>
<td>1.28124</td>
</tr>
<tr>
<td>29.5</td>
<td>1.26611</td>
<td>1.28165</td>
<td>1.26425</td>
</tr>
<tr>
<td>31.5</td>
<td>1.25023</td>
<td>1.26602</td>
<td>1.24849</td>
</tr>
<tr>
<td>33.5</td>
<td>1.23578</td>
<td>1.25144</td>
<td>1.23391</td>
</tr>
<tr>
<td>35</td>
<td>1.22554</td>
<td>1.24116</td>
<td>1.22364</td>
</tr>
<tr>
<td>40</td>
<td>1.19420</td>
<td>1.21004</td>
<td>1.19258</td>
</tr>
<tr>
<td>45</td>
<td>1.16738</td>
<td>1.18333</td>
<td>1.16590</td>
</tr>
<tr>
<td>50</td>
<td>1.14460</td>
<td>1.16059</td>
<td>1.14344</td>
</tr>
<tr>
<td>55</td>
<td>1.12494</td>
<td>1.13530</td>
<td>1.12199</td>
</tr>
<tr>
<td>60</td>
<td>1.10764</td>
<td>1.12348</td>
<td>1.10691</td>
</tr>
</tbody>
</table>

MCS solutions have 15~25 pcm of standard deviations
Numerical Results

- Using a new STREAM 220G library
Conclusions

- i-RIT and subgroup methods were implemented in STREAM and they were verified with the DeCART library.

- For a newly generated 190G STREAM library, both methods showed large keff errors compared to MCS reference keffs.

- For a newly generated 220G STREAM library slicing into resonance peaks, both methods showed improved accuracy.

- Especially, the subgroup method showed very high accuracy with keff errors below 300 pcm.
Future Plan

- Subgroup methods will be tested in STREAM with STREAM’s 72G PWR library.

- Two-term expansion (flux-sigb relation) of the subgroup method will be implemented in STREAM to get higher accuracy.

\[
\phi_k = \frac{\sum_i \lambda_i N_i \sigma_p^i + \Sigma^k}{N_r \sigma_{ak} + \sum_i \lambda_i N_i \sigma_p^i + \Sigma^k} = \frac{\sigma_b}{\sigma_{ak} + \sigma_b}, \quad \text{where} \quad \sigma_b = \frac{1}{N_r} \left(\sum_i \lambda_i N_i \sigma_p^i + \Sigma^k \right)
\]

\[
\sigma_{bk} = \frac{\sigma_{ak} \phi_k}{(1 - \phi_k)}
\]

\[
\sigma_{a,\text{eff}} = \frac{\sum_{k=1}^n \omega_k \sigma_{ak}}{\sum_{k=1}^n \omega_k} \frac{\sigma_{bk}}{\sigma_{ak} + \sigma_{bk}}
\]