Analysis of Effective Gadolinium Depletion Model

Jiwon Choe, Sooyoung Choi, Deokjung Lee

UNIST

May 17, 2018
I. Introduction

II. Gadolinium Depletion Solvers

III. Gadolinium Depletion Results and Analysis

IV. Conclusions
STREAM/RAST-K Code System

- Flowchart of 2-step Approach

STREAM
2D Transport calculation
Group constants generation

RAST-K2.0
3D Diffusion Calculation
Core Simulation

STORA
Gathering STN files
XS data reformatting

Input files
*.inp

Output Files
*.out *.ppm

STN files
*.stn

XS table
*.XS

Input files
*.inp *.RI

Output Files
*.SUM *.RST
Case Matrix

Full Case Matrix for Fuel
- Burnup Steps (~80 MWd/kg)
- 42 burnup steps for FA without BA
- More burnup steps for FA with Gd
- 14 restart points
- \[\Sigma = \Sigma_{base}(BU) + \Delta \Sigma_{TMO}(BU, TMO) + \Delta \Sigma_{BOR}(BU, BOR) + \Delta \Sigma_{TFU}(BU, TFU) + \Delta \Sigma_{CRD}(BU, TMO, BOR) \]

Full Case Matrix for Reflector

- \(T_f = T_m = 20 \)
- \(T_f = T_m = 425 \)
- \(T_f = T_m = 353 \)
- \(T_f = T_m = 293.6 \)
Depletion Modules in RAST-K 2.0

- **Microscopic Depletion**
 - Capability to track the number density and XS of major isotopes
 - Available to consider history effect for major isotopes

- **CRAM (Chebyshev Rational Approximation Method)**
 - Converged well even with shorter half life of isotope
 - Adopted for heavy nuclides chain and fission products chain

\[\dot{N} = AN + b, \quad N = e^{At}N_0 + \left(e^{At} - I \right)A^{-1}b \]
\[e^{At} = \alpha_0 I + 2 \text{Re} \left[\sum_{i=1}^{k/2} \alpha_i \left(A - \theta_i I \right)^{-1} \right] \]
Microscopic Depletion Verification I

- **Heavy Nuclides Chain Result for SKN1 FA sets**
 - A0~C1C: FA w/o BA difference ~ ±20 pcm
 - B1~C1: FA w/ gadolinia difference ~ ±30 pcm
Microscopic Depletion Verification II

- **Heavy Nuclides + FPs Chain** Result for SKN1 FA sets
 - A0~C1C: FA w/o BA difference ~ ±40 pcm
 - B1~C1: FA w/ gadolinia difference ~ ±80pcm
I. Direct Numerical Solution of Linear Chain

\[
\frac{dN_m(t)}{dt} = N_{m-1}(t)\sigma_{m-1}(t)\varphi(t) - N_m(t)\sigma_m(t)\varphi(t), \quad (m = ^{154}\text{Gd} \text{ to } ^{158}\text{Gd}),
\]
where

\[N_m = \text{the number density of isotope } m, \text{ as a function of time } (t)\]
\[\sigma_m(t) = \text{the microscopic absorption cross section of isotope } m\]
\[\varphi(t) = \text{the neutron flux}\]

II. Effective Gd Isotope Depletion

These definitions depend only on the structure of burnup chain, not on cross sections

\[N_{\text{Gd}^{\text{eff}}} = 5N_{\text{Gd}^{154}} + 4N_{\text{Gd}^{155}} + 3N_{\text{Gd}^{156}} + 2N_{\text{Gd}^{157}} + N_{\text{Gd}^{158}}\]
\[\sigma_{\text{Gd}^{\text{eff}}} = \frac{\Sigma_{\text{Gd}^{154}} + \Sigma_{\text{Gd}^{155}} + \Sigma_{\text{Gd}^{156}} + \Sigma_{\text{Gd}^{157}} + \Sigma_{\text{Gd}^{158}}}{N_{\text{Gd}^{\text{eff}}}}\]
where
\[N_{\text{Gd}^{\text{eff}}} = \text{the effective number density}\]
\[\sigma_{\text{Gd}^{\text{eff}}} = \text{the effective microscopic cross section}\]
Simulation Code

- Tested Code
 - STREAM/RAST-K 2.0
 - Reference code: STREAM

- STREAM Calculation Conditions
 - 3-ring for Fuel pins, 10-ring for Gadolinia pins
 - Quadratic depletion for Gd isotopes
 - Critical spectrum OFF
 - Reflective B.C. for all directions

- RAST-K 2.0 Calculation Conditions
 - Microscopic Depletion
 - Eigenvalue search mode
 - Reflective B.C. for all directions
 - Transient Xe, Transient Sm
Test Model

- **16 × 16 Combustion Engineering (CE) type fuel assembly**
 - 850 K for fuel, 584 K for other materials
 - Boron concentration of 700 ppm

<table>
<thead>
<tr>
<th>Case</th>
<th>Fuel Pin (235U wt.%)</th>
<th>Fuel Pins</th>
<th>Gadolinia Pin (235U/Gd$_2$O$_3$ wt.%)</th>
<th>Gd Pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.4/2.9</td>
<td>124/100</td>
<td>0.7/6.0</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>4.7/4.1</td>
<td>164/52</td>
<td>2.2/8.0</td>
<td>20</td>
</tr>
</tbody>
</table>

- **35 Depletion Steps for Gadolinia Assembly**

```
0  0.1  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6  6.5  7  7.5
8  8.5  9  9.5 10 11 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5
40
```
Test Cases I Depletion Results – k_{inf}

Case 1
- Effective Gd ±20 pcm diff
- Direct Numerical Sol. ±60 pcm diff

Case 2
- Effective Gd ±30 pcm diff
- Direct Numerical Sol. >1000 pcm diff
Test Cases I Depletion Results – 1G Absorption XS

Case 1

Case 2
Test Cases II

- **35 Depletion Steps for Gadolinia Assembly (Coarse)**

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0.1</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
<th>4.5</th>
<th>5</th>
<th>5.5</th>
<th>6</th>
<th>6.5</th>
<th>7</th>
<th>7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8</td>
<td>8.5</td>
<td>9</td>
<td>9.5</td>
<td>10</td>
<td>11</td>
<td>12.5</td>
<td>15</td>
<td>17.5</td>
<td>20</td>
<td>22.5</td>
<td>25</td>
<td>27.5</td>
<td>30</td>
<td>32.5</td>
<td>35</td>
<td>37.5</td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

- **70 Depletion Steps for Gadolinia Assembly (Fine)**

	0	0.1	0.5	1	1.5	2	2.5	3	3.5	4	5	5.5	6	6.5	7	7.5	15	17.5	20	22.5	25	27.5	30	32.5	35	37.5	40																			
7.5	8	8.5	9	9.5	10	10.5	11	11.5	12	13	13	13.5	14	14.5	15	16	17	17.5	18	18.5	19	19.5	20	21	21.5	22	22.5	23	24	25	25.5	26	26.5	27	27.5	28	29	29.5	30	30.5	31	32	32.5	35	37.5	40
Test Cases II Depletion Results – k_{inf}

Case 2-Coarse
- Effective Gd ± 30 pcm diff
- Direct Numerical Sol. >1000 pcm diff

Case 2-Fine
- Effective Gd ± 30 pcm diff
- Direct Numerical Sol. ± 40 pcm diff
Test Cases II Depletion Results – 1G Absorption XS

Case 2-Coarse

Case 2-Fine

[Graphs showing depletion results for Case 2-Coarse and Case 2-Fine]

May 17, 2018
Test Cases III

- 70 Depletion Steps for Gadolinia Assembly (Fine, Same)

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>2.5</td>
<td>3</td>
<td>3.5</td>
<td>4</td>
<td>5</td>
<td>5.5</td>
<td>6</td>
<td>6.5</td>
</tr>
<tr>
<td>7.5</td>
<td>8</td>
<td>8.5</td>
<td>9</td>
<td>9.5</td>
<td>10</td>
<td>10.5</td>
<td>11</td>
<td>11.5</td>
<td>12</td>
<td>13</td>
<td>13.5</td>
<td>14</td>
<td>14.5</td>
</tr>
<tr>
<td>15.5</td>
<td>16</td>
<td>16.5</td>
<td>17</td>
<td>17.5</td>
<td>18</td>
<td>18.5</td>
<td>19</td>
<td>19.5</td>
<td>20</td>
<td>21</td>
<td>21.5</td>
<td>22</td>
<td>22.5</td>
</tr>
<tr>
<td>23.5</td>
<td>24</td>
<td>24.5</td>
<td>25</td>
<td>25.5</td>
<td>26</td>
<td>26.5</td>
<td>27</td>
<td>27.5</td>
<td>28</td>
<td>29</td>
<td>29.5</td>
<td>30</td>
<td>30.5</td>
</tr>
<tr>
<td>31.5</td>
<td>32</td>
<td>32.5</td>
<td>35</td>
<td>37.5</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Random step depletion calculation (Random)

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>24</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td>32</td>
<td>34</td>
<td>36</td>
<td>38</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Cases III Depletion Results – k_{inf}

Case 2-Fine, same
- Effective Gd ±30 pcm diff
- Direct Numerical ±40 pcm diff

Case 2-Random
- Effective Gd ±30 pcm diff
- Direct Numerical Sol. ±180 pcm diff

<table>
<thead>
<tr>
<th>R2-DNS</th>
<th>R2-effGd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time [sec]</td>
<td>Total</td>
</tr>
<tr>
<td>1.942</td>
<td>0.275</td>
</tr>
<tr>
<td>Change [%]</td>
<td>-</td>
</tr>
</tbody>
</table>
Conclusions

- Analysis about two kinds of Gd depletion models
- Direct Gd linear chain depletion
 - The direct Gd linear chain depletion model needs finer burnup steps to get acceptable accuracy
 - Individual isotope amount can be tracked
- Effective Gd depletion
 - The effective Gd depletion model provides accurate solution within 20 pcm due to the linear change of absorption cross section as a function of burnup
 - Simulation time is faster
- The effective Gd depletion model is suitable for RAST-K 2.0.

Future Works
- Quadratic Depletion as burnup
UNiST CORE