Validation of Ultra-Fine Group Library Generation of Lead-cooled Fast Reactor for STREAM code

Kiho Kim^a, Sooyoung Choi^a, Deokjung Lee^{a*}

^aDepartment of Nuclear Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea *Corresponding author: deokjung@unist.ac.kr

INTRODUCTION

STREAM (Steady state and Transient REactor Analysis code with Method of characteristics) is a high-accuracy neutron transport analysis code for light water reactors. However, STREAM has a problem to analyze non-light water reactors, sast reactor analysis, a new nuclear cross-section library for Fast reactors was tested for LFR pin and assembly problems in this literature. To enhance the accuracy of STREAM for fast reactor analysis, a new nuclear cross-section library for Fast reactors was tested for LFR pin and assembly problems in this literature.

Methods and Model Problem

- STREAM code does not use resonance treatment for fast reactor analysis.
- The STREAM XS library for the fast reactor case was constructed in accordance with ANL 1041 group structure and the ANL 2082 group structure used in the MC2-3 code, and the ECCO 1968 group structure used in the ERANOS 2.3 code.

Problem Setting for LFR Library LFR Pin-cell problem Specification

LFR Pin	Material	Radius[cm]	Nuclide
Dim	Fuel	0.32606	U,Np,Pu,Am,Cm,Zr (Inner : U-Pu 3.33 w/o) (Middle : U-Pu 6.35 w/o) (Outer : U-Pu 9.37 w/o)
Pin	Pb	0.36384	Pb
	Zr	0.37399	Zr
	HT9	0.45000	Cr,Mn,Fe,Ni,Mo
	LBE	_	Pb,Bi

LFR Assembly problem Specification

Assembly	Material	Radius[cm]	Nuclide				
	Fuel	0.32606	U,Np,Pu,Am,Cm,Zr (U-Pu 6.35 w/o)				
Eugl pip	Pb	0.36384	Pb				
Fuel pin	Zr	0.37399	Zr				
	HT9	0.45000	Cr,Mn,Fe,Ni,Mo				
	LBE	_	Pb,Bi				
Control rod	Pb	0.40500	Pb				
Control rod	Zr	0.45500	Zr				

RESULTS

Absorption Reaction Rates & Reactivity difference comparison of the middle pin-cell problem test results of STREAM(1041G Library) and MCS.(Whole energy region)

Reactivity difference comparison of the middle pin-cell problem test results of STREAM(1041G Library & 2082G Library) and MCS. (Whole energy region)

CONCLUSION

- This paper shows that the differences in the changes of the group structure are confirmed and the denser fine group structure has more accurate multiplication factor results.
- It would be necessary to apply an appropriate methodology and energy group for fast reactor analysis on STREAM code.

RESULTS

LFR Pin-cell problem calculation results comparison (STREAM 72, ANL 1041, ECCO 1968, ANL 2082)

LED Dire	MCS		STREAM 72G(for LWR)		STREAM 1041G		STREAM 1968G		STREAM 2082G	
LFR Pin	k _{eff}	STD	k _{eff}	Diff. [pcm]	k _{eff}	Diff. [pcm]	k _{eff}	Diff. [pcm]	k _{eff}	Diff. [pcm]
Inner	0.95759	0.00004	0.99110	-3351	0.95559	-200	0.95695	-64	0.95672	-87
Middle	1.16190	0.00004	1.19004	-2814	1.15706	-484	1.15865	-325	1.15863	-327
Outer	1.33610	0.00004	1.35896	-2286	1.32934	-676	1.33103	-570	1.33099	-511

LFR Pin-cell problem average calculation times comparison (STREAM 72, ANL 1041, ECCO 1968, ANL 2082)

LFR Pin	MCS		STREAM 72G(for LWR)		STREAM 1041G		STREAM 1968G		STREAM 2082G	
	time[sec]	core	time[sec]	core	time[sec]	core	time[sec]	core	time[sec]	core
Time	598	133	11	1	552	1	2046	1	2034	1
Total time with 1 core	79534		11		552		2046		2034	

LFR assmebly problem calculation results comparison (STREAM 72, ANL 1041, ECCO 1968, ANL 2082)

LFR Assembly	MCS		STREAM		STREAM		STREAM		STREAM	
	1 V I		72G(for LWR)		1041G		1968G		2082G	
	k _{eff} STD	CTD		Diff.	k _{eff}	Diff. [pcm]	k _{eff}	Diff.		Diff.
		310		[pcm]				[pcm]	^K eff	[pcm]
Assembly	1.14870	0.00004	1.17813	-2943	1.14412	-458	1.14560	-310	1.14565	-305